
Using HPCToolkit to Measure and Analyze the 
Performance of Parallel Applications 

John Mellor-Crummey  
Rice University 

ATPESC 2020 
August 5, 2020

1

Download application examples to run, measure, and analyze: 
git clone https://github.com/HPCToolkit/hpctoolkit-tutorial-examples



Acknowledgments
• Current funding 

– DOE Exascale Computing Project (Subcontract 4000151982) 
– NSF Software Infrastructure for Sustained Innovation (Collaborative Agreement 1450273)  
– DOE Labs: ANL (Subcontract 9F-60073), Tri-labs (LLNL Subcontract B633244) 
– Industry: AMD  

• Team 
– Rice University  

• HPCToolkit PI: Prof. John Mellor-Crummey 
• Research staff: Laksono Adhianto, Mark Krentel, Xiaozhu Meng, Scott Warren 
• Contractor: Marty Itzkowitz 
• Students: Jonathon Anderson, Aaron Cherian, Dejan Grubisic, Yumeng Liu, Keren Zhou 
• Recent summer interns: Vladimir Indjic, Tijana Jovanovic, Aleksa Simovic 

– University of Wisconsin – Madison 
• Dyninst PI: Prof. Barton Miller

2



Performance Analysis Challenges on Modern Supercomputers
• Myriad performance concerns 

– Computation performance on CPU and GPU 
– Data movement costs within and between memory spaces 
– Internode communication 
– I/O 

• Many ways to hurt performance 
– insufficient parallelism, load imbalance, serialization, replicated work, parallel overhead … 

• Hardware and execution model complexity 
– Multiple compute engines with vastly different characteristics, capabilities, and concerns 
– Multiple memory spaces with different performance characteristics 

• CPU and GPU have different complex memory hierarchies 
– Often, a large gap between programming model and implementation 

• e.g., OpenMP, template-based programming models 
– Asynchronous execution

3



Outline
• Overview of Rice’s HPCToolkit 
• Understanding the performance of parallel programs using HPCToolkit’s GUIs 

– code centric views 
– time centric views 

• Monitoring GPU-accelerated applications 
• Work in progress

4



Rice University’s HPCToolkit Performance Tools
• Employs binary-level measurement and analysis 

– Observes executions of fully optimized, dynamically-linked applications  
– Supports multi-lingual codes with external binary-only libraries 

• Collects sampling-based measurements of CPU 
– Controllable overhead 
– Minimize systematic error and avoid blind spots 
– Enable data collection for large-scale parallelism 

• Measures GPU performance using APIs provided by vendors 
– Callbacks to monitor launch of GPU operations 
– Activity API to monitor and present information about asynchronous operations on GPU devices 
– PC sampling for fine-grain measurement 

• Associates metrics with both static and dynamic context 
– Loop nests, procedures, inlined code, calling context on both CPU and GPU 

• Specify and compute derived CPU and GPU performance metrics of your choosing 
– Diagnosis often requires more than one species of metric 

• Supports top-down performance analysis 
– Identify costs of interest and drill down to causes: up and down call chains, over time

5



source 
code

optimized 
binary

compile & link call path 
profile

profile 
execution 
[hpcrun] 

binary 
analysis 

[hpcstruct] 

interpret profile 
correlate w/ source 
[hpcprof/hpcprof-mpi]

database
presentation 
[hpcviewer/ 

hpctraceviewer] 

program 
structure

HPCToolkit Workflow

6



source 
code

optimized 
binary

compile & link call path 
profile

profile 
execution 
[hpcrun] 

binary 
analysis 

[hpcstruct] 

interpret profile 
correlate w/ source 
[hpcprof/hpcprof-mpi]

database
presentation 
[hpcviewer/ 

hpctraceviewer] 

program 
structure

HPCToolkit Workflow

 Measure execution unobtrusively with hpcrun 
— Launch optimized dynamically-linked application binaries 
— Collect statistical call path profiles of events of interest 
— Where necessary, intercept interfaces for control and measurement

7



Call Path Profiling
• Measure and attribute costs in context 

• Sample timer or hardware counter overflows 
• Gather CPU calling context using stack unwinding

Call path sample

instruction pointer

return address

return address

return address

Overhead proportional to sampling frequency, not call frequency

Calling context tree

8



source 
code

optimized 
binary

compile & link call path 
profile

profile 
execution 
[hpcrun] 

binary 
analysis 

[hpcstruct] 

interpret profile 
correlate w/ source 
[hpcprof/hpcprof-mpi]

database
presentation 
[hpcviewer/ 

hpctraceviewer] 

program 
structure

HPCToolkit Workflow

Analyze binary with hpcstruct: recover program structure 
— Analyze machine code, line map, debugging information 
— Extract loop nests & identify inlined procedures 
— Map transformed loops and procedures to source

9



source 
code

optimized 
binary

compile & link call path 
profile

profile 
execution 
[hpcrun] 

binary 
analysis 

[hpcstruct] 

interpret profile 
correlate w/ source 
[hpcprof/hpcprof-mpi]

database
presentation 
[hpcviewer/ 

hpctraceviewer] 

program 
structure

HPCToolkit Workflow

• Combine multiple profiles 
— Multiple threads; multiple processes; multiple executions 

• Correlate metrics to static & dynamic program structure

10



source 
code

optimized 
binary

compile & link call path 
profile

profile 
execution 
[hpcrun] 

binary 
analysis 

[hpcstruct] 

interpret profile 
correlate w/ source 
[hpcprof/hpcprof-mpi]

database
presentation 
[hpcviewer/ 

hpctraceviewer] 

program 
structure

HPCToolkit Workflow

Presentation 
— Explore performance data from multiple perspectives 

– Rank order by metrics to focus on what’s important 
 e.g., cycles, instructions, GPU instructions, GPU stalls 

– Compute derived metrics to help gain insight 
 e.g. scalability losses 

— Explore evolution of behavior over time

11



Code-centric Analysis with hpcviewer
• function calls in full context  
• inlined procedures 
• inlined templates 
• outlined OpenMP loops 
• loops

source pane

navigation pane

metric pane

view control

metric display

12



Understanding Temporal Behavior
• Profiling compresses out the temporal dimension 

– Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles 
• What can we do? Trace call path samples 

– N times per second, take a call path sample of each thread 
– Organize the samples for each thread along a time line 
– View how the execution evolves left to right 
– What do we view? assign each procedure a color; view a depth slice of an execution

Tim

Processes

Call  
stack

13



Time-centric Analysis with hpctraceviewer

Experimental version 
of QMCPack on Blue 
Gene Q 
• 32 ranks 
• 32 threads each

14
Time

Ranks/ 
Threads

Call Path at  
Cross Hair



Demo: QMCPACK
QMCPACK in ECP 

• Goal 
– Find, predict, and control materials and properties at the quantum level with an unprecedented 

and systematically improvable accuracy using quantum Monte Carlo methods 
• Focus:  

– transition metal oxide systems where the additional capability over existing methods is 
essential 

• Hope 
– have a major impact on materials science 

• e.g., help to uncover the mechanisms behind high-temperature superconductivity

15



Measurement and Analysis of GPU-accelerated Applications 

• What HPCToolkit GUIs present for GPU-accelerated applications 
– Profile views displaying call paths that integrate CPU and GPU call paths 
– Trace views that attribute CPU threads and GPU streams to full heterogeneous call paths 

• What HPCToolkit collects 
– Heterogeneous call path profiles and call path traces  

• How HPCToolkit collects information 
– CPU 

• Sampling-based measurement of application thread activity in user space and in the kernel 
• Measurement of blocking time using Linux perf_events context switch notifications 

– GPU 
• Coarse-grain measurement of GPU operations (memory copies, kernel launches, …) 
• Fine-grain measurement of GPU kernels using PC Sampling (NVIDIA only)

16



GPU Monitoring Capabilities of HPCToolkit 

Measurement  
Capability NVIDIA AMD Intel

kernel launches, 
explicit memory 

copies, 
synchronization 

callbacks +  
activity API

callbacks +  
Activity API callbacks

instruction-level 
measurement  
and analysis

PC sampling, 
analysis of GPU 

binaries
no GTPin

kernel characteristics Activity API (available statically) (unknown)

17

Prototype support 
in master branch

Prototype support in  
a development branch

Significant support 
in master branch



Miniqmc GPU OpenMP Example: A Trace View

18
hpctoolkit-tutorial-examples/examples/gpu/openmp/miniqmc 

Compute Node 
- 2 Power9 
- 6xNVIDIA GPU 

Compiled with  
IBM XL 
- 1 rank 
- 10 OMP threads 
- 32 GPU streams 

Trace view shows  
- master thread 
- OMP worker threads,  
- GPU streams  
- all activities attributed 

to full calling context



Miniqmc GPU OpenMP Example: A Profile View

19

Compute Node 
- 2 Power9 
- 6xNVIDIA GPU 

Compiled with  
IBM XL 
- 1 rank 
- 10 OMP threads 
- 32 GPU streams 

Profile view shows OMP 
target offload in full 
calling context

hpctoolkit-tutorial-examples/examples/gpu/openmp/miniqmc 



Quicksilver GPU CUDA Example: Detailed Profile View

20

Compute Node 
- 2 Power9 
- 6xNVIDIA GPU 

• Optimized (-O2) compilation with 
nvcc 

• 1 GPU stream 
• Detailed measurement and 

attribution using PC sampling 
• Reconstruct approximate call graph 

on GPU from flat PC samples 
• Attribute information to 

heterogeneous calling context 
including 
- CPU calling context 
- GPU kernel 
- GPU calling context 
- GPU loops 
- GPU statements  

• Metrics 
- instructions executed 
- instruction stalls and reasons 
- GPU utilization

 hpctoolkit-tutorial-examples/examples/gpu/quicksilver



Quicksilver GPU CUDA Example: Detailed Profile View

21

• Optimized (-O2) compilation  
with nvcc 

• 1 GPU stream 
• Detailed measurement and 

attribution using PC sampling 
• Reconstruct approximate call 

graph on GPU from flat PC 
samples 

• Attribute information to 
heterogeneous calling context 
including 
- CPU calling context 
- GPU kernel 
- GPU calling context 
- GPU loops 
- GPU statements  

• Metrics 
- instructions executed 
- instruction stalls and reasons 
- GPU utilization

 hpctoolkit-tutorial-examples/examples/gpu/quicksilver

Detailed Attribution on GPUs



Work in Progress
• GPU Enhancements 

• Intel GPUs 
• Measurement support for Intel GPUs using OpenCL and Level 0 
• Fine-grain measurement using GTPin 
• Fine-grain attribution using binary analysis 

• AMD GPUs 
• Binary analysis and instrumentation for fine-grain measurement and attribution  

• Scalability 
• Add multithreading to hpcprof-mpi to accelerate analysis 
• Overhaul representations used for recording measurement and analysis results to use sparse forms 
• Overhaul file management to use few large files instead of two per thread 

• User interface 
• Integrated hpcviewer and hpctraceviewer 
• Modernized implementation using latest Eclipse and Java

22



Bonus Content

23



Download Hands-on Tutorial Examples
• git clone https://github.com/hpctoolkit/hpctoolkit-tutorial-examples 
• Configured for use on  

• ANL’s Theta 
• AMG2006 
• MPI + OpenMP 

• ORNL’s Ascent  
• miniqmc 
• CPU OpenMP: GCC, XL 
• GPU OpenMP Target: XL 

• quicksilver 
• GPU CUDA: nvcc

24



Installing HPCToolkit: Configuration and Installation on Ascent
Use spack for installation 

• git clone https://github.com/spack/spack 
• module load gcc 

• ensure that a GCC version >= 5 is on your path. 
typically, we use GCC 7 to compile hpctoolkit 

• export SPACK_ROOT=`pwd`/spack 
• export PATH=${SPACK_ROOT}/bin:$PATH 
• source ${SPACK_ROOT}/share/spack/setup-env.sh 
• spack compiler find 
• configure ~/.spack/packages.yaml for custom build 
• spack install hpctoolkit 
• see http://hpctoolkit.org/software-instructions.html 

for additional details and troubleshooting

25



HPCToolkit’s Graphical User Interfaces
• Overview 
• Tips for using them effectively

26



hpctraceviewer Panes and their Purposes
• Trace View pane 

– Displays a sequence of samples for each trace line rendered 
– Title bar shows time interval rendered, rank interval rendered, cross hair location  

• Call Path pane 
– Show the call path of the selected thread at the cross hair 

• Depth View pane  
– Show the call stack over time for the thread marked by the cross hair 
– Unusual changes or clustering of deep call stacks can indicate behaviors of potential interest 

• Summary View pane 
– At each point in time, a histogram of colors above in a vertical column of the Trace View

27



Rendering Traces with hpctraceviewer
• hpctraceviewer renders traces by sampling the [rank x time] rectangle in the viewport 

– Don’t try to summarize activity in a time interval represented by a pixel 
– Just pick the last activity before the sample point in time  

• Cost of rendering a large execution is [H x T lg N] for traces of length N 
– The number of trace lines that can be rendered is limited by the number of vertical pixels H 
– Binary search along rendered trace lines to extract values for pixels 

• It can be used to analyze large data: thousands of ranks and threads 
– Data is kept on disk, memory mapped, and read only as needed

28



Understanding How hpctraceviewer Paints Traces
• CPU trace lines 

– Given: (procedure f, t) (procedure g, t’) (procedure h, t’’) 
• Default painting algorithm  
– paint color “f” in [t,t’); paint color “g” in [t’, t’’) 

• Midpoint painting algorithm  
– paint color “f” in [t, (t+t’)/2); paint color “g” in [(t+t’)/2, (t’+t’’)/2) 

• GPU trace lines 
– Given GPU operations “f” in interval [t, t’) and and “g” in interval [t’’, t’’’)  

• paint color “f” in [t, t’); paint color white in [t’, t’’); paint color “g” in [t’’, t’’’)

29



Analysis Strategies with Time-centric hpctraceviewer
• Use top-down analysis to understand the broad characteristics of the parallel execution 
• Click on a point of interest in the Trace View to see the call path there 
• Zoom in on individual phases of the execution or more generally subsets of [rank, time] 

• The mini-map tracks what subset of the execution you are viewing 
• Home, undo, redo buttons allow you to move back and forth in a sequence of zooms 
• Drill down the call path to see what is going on at the call path leaves 

• Hold your mouse over the call path depth selector. a tool tip will tell you the maximum depth 
• Type the maximum call stack depth number into the depth selector 

• Use the summary view to see a histogram about what fraction of threads or ranks is doing 
at each time 

• The summary view can facilitate analysis of how behavior changes over time 
• The statistics view can show you the fraction of [rank x time] spent in each procedure at 

the selected depth level

30



Understanding the Navigation Pane in Code-centric hpcviewer
• <program root>: the top of the call chain for the executable 
• <thread root>: the top of the call chain for any pthreads 
• <partial call paths> 

• The presence of partial call paths indicates that hpcrun was unable to fully unwind the call stack 
• Even if a large fraction of call paths are “partial” unwinds, bottom-up and flat views can be very 

informative 
• Sometimes functions appear in the navigation pane and appear to be a root 

• This means that hpcrun believed that the unwind was complete and successful 
• Ideally, this would have been placed under <partial call paths> 

31



Understanding the Navigation Pane in Code-centric hpcviewer
• Treat inlined functions as if regular functions 
• Calling an inlined function 

 

• If no source file is available, the caller line number and the callee will be in black

32

[I] is a tag used to indicate that the called function is inlined

callsite is a hyperlink to the file and source line where the inlined function is called

callee is a hyperlink to the definition of the inlined function



Analysis Strategies with Code-centric hpcviewer
• Use top-down analysis to understand the broad characteristics of the execution 

• Are there specific unique subtrees in the computation that use or waste a lot of resources? 
• Select a costly node and drill down the “hottest path” rooted there with the flame button 
• One can select a node other than the root and use the flame button to look in its subtree 
• Hold your mouse over a long name in the navigation pane to see the full name in a tool tip 

• Use bottom-up analysis to identify costly procedures and their callers 
• Pick a metric of interest, e.g. cycles 
• Sort by cycles in descending order 
• Pick the top routine and use the flame button to look up the call stack to its callers 
• Repeat for a few routines of particular interest, e.g. network wait, lock wait, memory alloc, … 

• Use the flat view to explore the full costs associated with code at various granularities 
• Sort by a cost of interest; use the flame button to explore an interesting load module 
• Use the “flatten” button to melt away load modules, files, and functions to identify the most costly loop

33



Preparing a GPU-accelerated Program for HPCToolkit
• HPCToolkit doesn’t need any modifications to your Makefiles 

– it can measure fully-optimized code without special preparation 
• To get the most from your measurement and analysis 

– Compile your program with line numbers 
• CPU (all compilers) 
– add “-g” to your compiler optimization flags 

• NVIDIA GPUs  
– compiling with nvcc 

• add “-lineinfo” to your optimization flags for GPU line numbers 
• adding -G provides full information about inlining and GPU code structure but disables optimization 

– compiling with xlc 
• line information is unavailable for optimized code 

• AMD GPUs, no special preparation needed 
– current AMD GPUs and ROCM software stack lack capabilities for fine-grain measurement and attribution 

• Intel GPUs (prototypes not integrated into HPCToolkit master) 
– monitors kernel launches, memory copies, synchronization 
– partial support for fine-grain monitoring with GTPin instrumentation; no source-level attribution yet

34



Using HPCToolkit to Measure an Execution
• Sequential program 

• hpcrun [measurement options] program [program args] 

• Parallel program 

• mpirun -n <nodes> [mpi options] hpcrun [measurement options] \ 
program [program args] 

• Similar launches with job managers 
• LSF: jsrun 
• SLURM: srun 
• Cray: aprun

35



CPU Time-based Sample Sources - Linux thread-centric timers
• CPUTIME (DEFAULT if no sample source is specified) 

– CPU time used by the thread in microseconds 
– Does not include time blocked in the kernel 

• disadvantage: completely overlooks time a thread is blocked 

• advantage: a blocked thread is never unblocked by sampling 

• REALTIME 
– Real time used by the thread in microseconds 
– Includes time blocked in the kernel 

• advantage: shows where a thread spends its time, even when blocked 

• disadvantages 

–activates a blocked thread to take a sample 

–a blocked thread appears active even when blocked

Note: Only use one Linux timer to measure an execution
36



CPU Sample Sources - Linux perf_event monitoring subsystem
• Kernel subsystem for performance monitoring  
• Access and manipulate  

– Hardware counters: cycles, instructions, … 
– Software counters: context switches, page faults, … 

• Available in Linux kernels 2.6.31+ 
• Characteristics 

– Monitors activity in user space and in the kernel 
• Can see costs in GPU drivers

37



Case Study: Measurement and Analysis of GPU-accelerated Laghos

Laghos (LAGrangian High-Order Solver) is a LLNL ASC co-design mini-app 
that was developed as part of the CEED software suite, a collection of software 
benchmarks, miniapps, libraries and APIs for efficient exascale discretization 
based on high-order finite element and spectral element methods. 

Figure credit: https://computing.llnl.gov/projects/co-design/laghos
38



Applying the GPU Operation Measurement Workflow to Laghos 
# measure an execution of laghos 

time mpirun -np 4 hpcrun -o $OUT -e cycles -e gpu=nvidia -t \ 

${LAGHOS_DIR}/laghos -p 0 -m ${LAGHOS_DIR}/../data/square01_quad.mesh \ 

-rs 3 -tf 0.75 -pa 

# compute program structure information for the laghos binary 

hpcstruct -j 16 laghos 

# compute program structure information for the laghos cubins 

hpcstruct -j 16 $OUT 

# combine the measurements with the program structure information 

mpirun -n 4  hpcprof-mpi -S laghos.hpcstruct $OUT 

39



Computing Program Structure Information for NVIDIA cubins
• When a GPU-accelerated application runs, HPCToolkit collects unique GPU binaries 

• Currently, NVIDIA does not provide an API that provides a URI for cubins it launches 
•  CUPTI presents cubins to tools as an interval in the heap (starting address, length) 
• HPCToolkit computes an MD5 hash for each cubin and saves one copy 

• stores save cubins in hpcrun’s measurement directory: <measurement directory>/cubins 
• Analyze the cubins collected during an execution 

• hpcstruct -j 16 <measurement directory> 

• lightweight analysis based only on cubin symbols and line map 
• hpcstruct -j 16 —gpucfg yes <measurement directory> 

• heavyweight analysis based only on cubin symbols, line map, control flow graph 
• uses nvdisasm to compute control flow graph 

• fine-grain analysis only needed to interpret PC sampling experiments 
• hpcstruct analyzes cubins in parallel using thread count specified with -j

40



Initial hpctraceviewer view of Laghos (long) Execution
MPI  

Ranks

GPU  
Streams

41



Hiding the Empty MPI Helper Threads

42



After Hiding the Empty MPI Helper Threads

43



A Detail of Only the MPI Threads

44



Only the MPI Threads - Analysis using the Statistics Panel

45



Only the GPU Threads - Inspecting the Callpath for a Kernel

46



Only the GPU Threads - Analysis Using the Statistics Panel

47



Some Cautions When Analyzing GPU Traces
• There are overheads introduced by NVIDIA’s monitoring API that we can’t avoid 
• When analyzing traces from your program and compare GPU activity to [no activity] 

– Time your program without any tools 
– Time your program when tracing with HPCToolkit or nvprof 
– Re-weight <no activity> by the ratio of unmonitored time to monitored time 

• While this is a concern for traces, this should be less a concern for profiles 
– On the CPU, HPCToolkit compensates for monitoring overhead in profiles by not measuring it

48



Using hpcviewer to See the Source-centric View

49



Selecting Metrics to Display Using the Column Selector

50



Using GPU Kernel Time to Guide Top-down Exploration

Select the header to select the column 
triangle indicates descending sort

GPU Kernel  
Launch

51



Using GPU Kernel Time to Guide Bottom-up Exploration

52



HPCToolkit’s GPU Instruction Sampling Metrics (NVIDIA Only)

Metric Definition
GINST:STL_ANY GPU instruction stalls: any (sum of all STALL metrics other than NONE)
GINST:STL_NONE GPU instruction stalls: no stall

GINST:STL_IFET GPU instruction stalls: await availability of next instruction (fetch or branch delay)

GINST:STL_IDEP GPU instruction stalls: await satisfaction of instruction input dependence

GINST:STL_GMEM GPU instruction stalls: await completion of global memory access

GINST:STL_TMEM GPU instruction stalls: texture memory request queue full

GINST:STL_SYNC GPU instruction stalls: await completion of thread or memory synchronization

GINST:STL_CMEM GPU instruction stalls: await completion of constant or immediate memory access

GINST:STL_PIPE GPU instruction stalls: await completion of required compute resources

GINST:STL_MTHR GPU instruction stalls: global memory request queue full

GINST:STL_NSEL GPU instruction stalls: not selected for issue but ready

GINST:STL_OTHR GPU instruction stalls: other

GINST:STL_SLP GPU instruction stalls: sleep

53



Approximation of GPU Calling Contexts to Understand Performance
• GPU code from C++ template-based programming 

models is complex 

• NVIDIA GPUs collect flat PC samples 

• Flat profiles for instantiations of complex C++ 
templates are inscrutable 

• HPCToolkit reconstructs approximate  
GPU calling contexts 
– Reconstruct call graph from machine code 
– Infer calls at call sites  

– PC samples of call instructions indicate calls 
• Use call counts to apportion costs to call sites 

– PC samples in a routine 

54



Approximation of GPU Calling Contexts to Understand Performance

• GPU code from C++ template-based programming 
models is complex 

• NVIDIA GPUs collect flat PC samples 

• Flat profiles for instantiations of complex C++ 
templates are inscrutable 

• HPCToolkit reconstructs approximate  
GPU calling contexts 
– PC samples of call instructions indicate calls 

• Use counts to split costs 

– PC samples in a routine 
• Infer caller or distribute costs equally to potential callers  

55



Approximation of GPU Calling Contexts to Understand Performance
• GPU code from C++ template-based programming 

models is complex 

• NVIDIA GPUs collect flat PC samples 

• Flat profiles for instantiations of complex C++ 
templates are inscrutable 

• HPCToolkit reconstructs approximate  
GPU calling contexts 
– Reconstruct call graph from machine code 
– Infer calls at call sites  

– PC samples of call instructions indicate calls 
• Use call counts to apportion costs to call sites 

– PC samples in a routine 

56



Approximation of GPU Calling Contexts to Understand Performance
• GPU code from C++ template-based programming 

models is complex 

• NVIDIA GPUs collect flat PC samples 

• Flat profiles for instantiations of complex C++ 
templates are inscrutable 

• HPCToolkit reconstructs approximate  
GPU calling contexts 
– PC samples of call instructions indicate calls 

• Use counts to split costs 

– PC samples in a routine 
• Infer caller or distribute costs equally to potential callers  

57



Accuracy of GPU Calling Context Recovery: Case Studies

58

• Compute approximate call counts as the basis for partitioning the cost of function 
invocations across call sites 
• Use call samples at call sites, data flow analysis to propagate call approximation upward 

• if samples were collected in some function f, if no calls to f were sampled, equally attribute f 
to each of its call sites 

– How accurate is our approximation? 
• Evaluation methodology 

– Use NVIDIA’s nvbit to  
– instrument call and return for GPU functions 
– instrument basic blocks to collect block histogram



Accuracy of GPU Calling Context Recovery: Case Studies

59

• Error partitioning a function’s cost among call sites 

• Experimental study

geometric mean across GPU functions 
of (root mean square error of call 
attribution across all of a function’s call 
sites comparing our approximation vs. 
attribution using exact nvbit 
measurements)



Costs of GPU Functions Distributed Among Their Call Sites
• Use call site frequency approximation 
• Use Gprof assumption: all calls to a function incur exactly the same cost 

– known to not be true in all cases, but a useful assumption nevertheless 

60



GPU call site attribution example
• Case study: call function GPU “vectorAdd”*  

• iter1 = N 
• iter2 = 2N

.global vecAdd

.type vecAdd,@function

.size vecAdd,(.L_41 - vecAdd)

.other vecAdd,<no object>
vecAdd:
.text.vecAdd:
0000:   NOP;
0010:   IMAD.U32 R1, RZ, RZ, c[0x0][0x28];
0020:   S2R R6, SR_CTAID.X;
0030:   S2R R0, SR_TID.X;
0040:   ISETP.EQ.U32.AND P0, PT, RZ, c[0x0][0x180], PT;
0050:   ISETP.EQ.AND.EX P0, PT, RZ, c[0x0][0x184], PT, P0;
0060:   IMAD.U32 R7, RZ, RZ, 0x4;
0070:   IMAD R6, R6, c[0x0][0x0], R0;
0080:   IMAD.WIDE.U32 R4, R6.reuse, R7.reuse, c[0x0][0x160];
0090:   IMAD.WIDE.U32 R2, R6.reuse, R7.reuse, c[0x0][0x168];
00a0:   IMAD.WIDE.U32 R6, R6, R7, c[0x0][0x170];

00b0:   @P0 BRA `(.L_1);

00c0:   IMAD.U32 R0, RZ, RZ, c[0x0][0x180];
00d0:   LOP3.LUT R0, R0, 0x3, RZ, 0xc0, !PT;
00e0:   ISETP.EQ.U32.AND P0, PT, R0, RZ, PT;
00f0:   ISETP.EQ.AND.EX P0, PT, RZ, RZ, PT, P0;
0100:   IMAD.U32 R10, RZ, RZ, RZ;
0110:   IMAD.U32 R12, RZ, RZ, RZ;

0120:   @P0 BRA `(.L_2);

0130:   ISETP.EQ.U32.AND P0, PT, R0, 0x1, PT;
0140:   ISETP.EQ.AND.EX P0, PT, RZ, RZ, PT, P0;

0150:   @P0 BRA `(.L_3);

0160:   ISETP.EQ.U32.AND P0, PT, R0, 0x2, PT;
0170:   ISETP.EQ.AND.EX P0, PT, RZ, RZ, PT, P0;
0180:   IMAD.U32 R10, RZ, RZ, 0x1;
0190:   IMAD.U32 R12, RZ, RZ, RZ;

01a0:   @P0 BRA `(.L_4);

01b0:   LDG.E.SYS R0, [R4];
01c0:   LDG.E.SYS R9, [R2];
01d0:   MOV R8, 0x1f0;
01e0:   CALL.REL.NOINC `($vecAdd$_Z3addii);
01f0:   STG.E.SYS [R6], R11;
0200:   IMAD.U32 R10, RZ, RZ, 0x2;
0210:   IMAD.U32 R12, RZ, RZ, RZ;

.L_1:
04f0:   ISETP.EQ.U32.AND P0, PT, RZ, c[0x0][0x188], PT;
0500:   ISETP.EQ.AND.EX P0, PT, RZ, c[0x0][0x18c], PT, P0;

0510:   @P0 EXIT;

0520:   IMAD.U32 R0, RZ, RZ, c[0x0][0x188];
0530:   LOP3.LUT R0, R0, 0x3, RZ, 0xc0, !PT;
0540:   ISETP.EQ.U32.AND P0, PT, R0, RZ, PT;
0550:   ISETP.EQ.AND.EX P0, PT, RZ, RZ, PT, P0;
0560:   IMAD.U32 R10, RZ, RZ, RZ;
0570:   IMAD.U32 R12, RZ, RZ, RZ;

0580:   @P0 BRA `(.L_6);

0590:   ISETP.EQ.U32.AND P0, PT, R0, 0x1, PT;
05a0:   ISETP.EQ.AND.EX P0, PT, RZ, RZ, PT, P0;

05b0:   @P0 BRA `(.L_7);

05c0:   ISETP.EQ.U32.AND P0, PT, R0, 0x2, PT;
05d0:   ISETP.EQ.AND.EX P0, PT, RZ, RZ, PT, P0;
05e0:   IMAD.U32 R10, RZ, RZ, 0x1;
05f0:   IMAD.U32 R12, RZ, RZ, RZ;

0600:   @P0 BRA `(.L_8);

0610:   LDG.E.SYS R0, [R4];
0620:   LDG.E.SYS R9, [R2];
0630:   MOV R8, 0x650;
0640:   CALL.REL.NOINC `($vecAdd$_Z3addii);
0650:   STG.E.SYS [R6], R11;
0660:   IMAD.U32 R10, RZ, RZ, 0x2;
0670:   IMAD.U32 R12, RZ, RZ, RZ;

.L_2:
02e0:   IMAD.U32 R8, RZ, RZ, 0x4;
02f0:   IMAD.U32 R0, RZ, RZ, c[0x0][0x184];
0300:   ISETP.GT.U32.AND P0, PT, R8, c[0x0][0x180], PT;
0310:   ISETP.LT.U32.AND.EX P0, PT, R0, RZ, PT, P0;

0320:   @P0 BRA `(.L_1);

.L_3:
0270:   LDG.E.SYS R9, [R2];
0280:   LDG.E.SYS R0, [R4];
0290:   MOV R8, 0x2b0;
02a0:   CALL.REL.NOINC `($vecAdd$_Z3addii);
02b0:   STG.E.SYS [R6], R11;
02c0:   IADD3 R10, P0, R10, 0x1, RZ;
02d0:   IMAD.X R12, RZ, RZ, R12, P0;

.L_4:
0220:   LDG.E.SYS R9, [R2];
0230:   LDG.E.SYS R0, [R4];
0240:   MOV R8, 0x260;
0250:   CALL.REL.NOINC `($vecAdd$_Z3addii);
0260:   STG.E.SYS [R6], R11;

.L_6:
0740:   IMAD.U32 R8, RZ, RZ, c[0x0][0x188];
0750:   IMAD.U32 R0, RZ, RZ, c[0x0][0x18c];
0760:   ISETP.LT.U32.AND P0, PT, R8, 0x4, PT;
0770:   ISETP.LT.U32.AND.EX P0, PT, R0, RZ, PT, P0;

0780:   @P0 EXIT;

.L_7:
06d0:   LDG.E.SYS R9, [R2];
06e0:   LDG.E.SYS R0, [R4];
06f0:   MOV R8, 0x710;
0700:   CALL.REL.NOINC `($vecAdd$_Z3addii);
0710:   STG.E.SYS [R6], R11;
0720:   IADD3 R10, P0, R10, 0x1, RZ;
0730:   IMAD.X R12, RZ, RZ, R12, P0;

.L_8:
0680:   LDG.E.SYS R9, [R2];
0690:   LDG.E.SYS R0, [R4];
06a0:   MOV R8, 0x6c0;
06b0:   CALL.REL.NOINC `($vecAdd$_Z3addii);
06c0:   STG.E.SYS [R6], R11;

.L_5:
0330:   NOP;
0340:   LDG.E.SYS R9, [R2];
0350:   LDG.E.SYS R0, [R4];
0360:   MOV R8, 0x380;
0370:   CALL.REL.NOINC `($vecAdd$_Z3addii);
0380:   STG.E.SYS [R6], R11;
0390:   LDG.E.SYS R9, [R2];
03a0:   LDG.E.SYS R0, [R4];
03b0:   MOV R8, 0x3d0;
03c0:   CALL.REL.NOINC `($vecAdd$_Z3addii);
03d0:   STG.E.SYS [R6], R11;
03e0:   LDG.E.SYS R9, [R2];
03f0:   LDG.E.SYS R0, [R4];
0400:   MOV R8, 0x420;
0410:   CALL.REL.NOINC `($vecAdd$_Z3addii);
0420:   STG.E.SYS [R6], R11;
0430:   LDG.E.SYS R9, [R2];
0440:   LDG.E.SYS R0, [R4];
0450:   MOV R8, 0x470;
0460:   CALL.REL.NOINC `($vecAdd$_Z3addii);
0470:   IADD3 R0, P0, R10, 0x4, RZ;
0480:   STG.E.SYS [R6], R11;
0490:   IMAD.X R8, RZ, RZ, R12, P0;
04a0:   ISETP.LT.U32.AND P0, PT, R0, c[0x0][0x180], PT;
04b0:   ISETP.LT.U32.AND.EX P0, PT, R8, c[0x0][0x184], PT, P0;
04c0:   IMAD.U32 R10, RZ, RZ, R0;
04d0:   IMAD.U32 R12, RZ, RZ, R8;

04e0:   @P0 BRA `(.L_5);

.L_9:
0790:   NOP;
07a0:   LDG.E.SYS R9, [R2];
07b0:   LDG.E.SYS R0, [R4];
07c0:   MOV R8, 0x7e0;
07d0:   CALL.REL.NOINC `($vecAdd$_Z3addii);
07e0:   STG.E.SYS [R6], R11;
07f0:   LDG.E.SYS R9, [R2];
0800:   LDG.E.SYS R0, [R4];
0810:   MOV R8, 0x830;
0820:   CALL.REL.NOINC `($vecAdd$_Z3addii);
0830:   STG.E.SYS [R6], R11;
0840:   LDG.E.SYS R9, [R2];
0850:   LDG.E.SYS R0, [R4];
0860:   MOV R8, 0x880;
0870:   CALL.REL.NOINC `($vecAdd$_Z3addii);
0880:   STG.E.SYS [R6], R11;
0890:   LDG.E.SYS R9, [R2];
08a0:   LDG.E.SYS R0, [R4];
08b0:   MOV R8, 0x8d0;
08c0:   CALL.REL.NOINC `($vecAdd$_Z3addii);
08d0:   IADD3 R0, P0, R10, 0x4, RZ;
08e0:   STG.E.SYS [R6], R11;
08f0:   IMAD.X R8, RZ, RZ, R12, P0;
0900:   ISETP.LT.U32.AND P0, PT, R0, c[0x0][0x188], PT;
0910:   ISETP.LT.U32.AND.EX P0, PT, R8, c[0x0][0x18c], PT, P0;
0920:   IMAD.U32 R10, RZ, RZ, R0;
0930:   IMAD.U32 R12, RZ, RZ, R8;

0940:   @P0 BRA `(.L_9);

0950:   EXIT;

.type $vecAdd$_Z3addii,@function

.size $vecAdd$_Z3addii,(.L_41 - $vecAdd$_Z3addii)
$vecAdd$_Z3addii:
0960:   NOP;
0970:   IMAD R11, R0, 0x1, R9;
0980:   IMAD.U32 R9, RZ, RZ, 0x0;

0990:   RET.REL.NODEC R8 `(vecAdd);

.L_10:

09a0:   BRA `(.L_10);

Note: the computation by the function is synthetic and 
is not a vector addition. The name came from code that 
was hacked to do perform an unrelated computation.

61



Profiling Result for GPU-accelerated Example

GPU kernel

device fn calls
device fn calls

loop 14 loop 11

62



Support for OpenMP TARGET
• HPCToolkit implementation 

of OMPT OpenMP API 
– host monitoring 
• leverages callbacks for 

regions, threads, tasks 
• employs OMPT API for 

call stack introspection 
– GPU monitoring 
• leverages callbacks for 

device initialization, 
kernel launch, data 
operations 

– reconstruction of user-
level calling contexts 

• Leverages implementation of 
OMPT in LLVM OpenMP and 
libomptarget  

ECP QMCPACK Project: miniqmc  using OpenMP TARGET 
(Power9 + NVIDIA V100)

Reconstruct full calling contexts that 
include  
• Outlined procedures for OpenMP 

parallel regions 
• Offloaded OpenMP TARGET 

computation and synchronization

63



Support for RAJA and and Kokkos C++ Template-based Models 
• RAJA and Kokkos provide 

portability layers atop C++ 
template-based programming 
abstractions 

• HPCToolkit employs binary 
analysis to recover 
information about 
procedures, inlined functions 
and templates, and loops 
– Enables both developers and 

users to understand complex 
template instantiation 
present with these models 

ECP EXAALT Project: lammps  using Kokkos over CUDA 
(Power9 + NVIDIA V100)

Reconstruct full calling contexts 
that include  
• Inlined Kokkos templates 
• Offloaded Kokkos CUDA 

computation

64



Prototype Integration with AMD’s Roctracer GPU Monitoring Framework

AMD MatrixTranspose Testcase for Roctracer 
(AMD Ryzen + AMD 580 GPU)

• Use AMD Roctracer activity 
API to trace GPU activity 
– kernel launches 
– explicit memory copies 

• Current prototype supports 
AMD’s HIP programming 
model

Attribute AMD GPU activity  
• Kernel execution 
• Memory copies

65



HPCToolkit Challenges and Limitations
• Fine-grain measurement and attribution of GPU performance  

– PC sampling overhead on NIVIDIA GPUs is currently very high: a function of NVIDIA’s CUPTI 
implementation 

– No available hardware support for fine-grain measurement on Intel and AMD GPUs 
• GPU tracing in HPCToolkit 

– Creates one tool thread per GPU stream when tracing 
– OK for a small number of streams but many streams can be problematic 

• Cost of call path sampling 
– Call path unwinding of GPU kernel invocations is costly (~2x execution dilation for Laghos) 
– Best solution is to avoid some of it, e.g. sample GPU kernel invocations 

– Currently, hpcprof and hpcprof-mpi compute dense vectors of metrics 
– Designed for few CPU metrics, not O(100) GPU metrics: space and time problem for analysis

66



Analysis and Optimization Case Studies
• Environments 

• Summit 
– cuda/10.1.168 
– gcc/6.4.0 

• Local 
– cuda/10.1.168 
– gcc/7.3.0

67



Case 1: Locating expensive GPU APIs with profile view
• Laghos 
– 1 MPI process 
– 1 GPU stream per process

68



nvprof: missing CPU calling context
• Goal: Associate every GPU API with its CPU calling context

69



Context-aware optimizations

70



Performance insight: Pin host memory page 

• A small amount of memory is transferred from device to host each time, repeated 197000 
times 

• Avoid the cost of the transfer between pageable and pinned host arrays by directly 
allocating our host arrays in pinned	memory	

• Use pinned memory when data movement frequency is high but size is small

71



Case 2: Trace Applications at Large-scale
• Nyx 
– 6 MPI processes 
– 16 GPU stream per process 

• DCA++ 
– 60 MPI processes 
– 128 GPU stream per process

72



nvprof: Non-scalable Tracing of DCA++
• nvprof 

– With CPU profiling enabled, hangs on Summit 
– Without CPU profiling 

• Collects 1.1 GB data 
• Hpctoolkit  

– CPU+GPU hybrid profiling with full calling context 
• Collects 0.13 GB data 
• Data can be further reduced by sampling GPU events

73



Nyx trace view

74



DCA++ trace view

75



Nyx insufficient GPU stream parallelism
• On GPU, streams are not working concurrently

76



Nyx cudaCallBack issue
• On CPU, amrex::Gpu::Exlixir::clear() invokes stream callbacks

77



Nyx performance insight
• A bug present in the current version of CUDA (10.1). If a callBack is called in a place where 

multiple streams are used, the device kernels artificially synchronize and have no overlap.  
• Fixed in CUDA-10.2? 
• Workaround 

– The Elixir object holds a copy of the data pointer to prevent it from being 
destroyed before the related device kernels are completed  

– Allocate new objects outside the compute loop and delete them after the 
completion of the work

78



Case 3: Fine-grained GPU Kernel Tuning 
• Nekbone: A lightweight subset of Nek5000 that mimics the essential computational 

complexity of Nek5000

79



nvprof: Limited source level performance metrics
• No loop structure,     No GPU calling context,      No instruction mix 

80



Nekbone Profile View 

81



Performance insight 1: Execution dependency
• The hotspot statement is waiting for j and k

82



Strength reduction
• MISC.CONVERT: I2F, F2I, MUFU instructions 
– NVIDIA GPUs convert integer to float for division 
– High latency and low throughput instruction 

• Replace j	=	it	/	N by j	=	it	x	(1/N)	and precompute 1/N

83



Coming Attraction: Instruction-level Analysis
Separate GPU instructions into classes 

– Memory operations 
– instruction (load, store) 
– size 
– memory kind (global memory, texture memory, constant memory) 

– Floating point 
– instruction (add, mul, mad) 
– size 
– compute unit (tensor unit, floating point unit) 

– Integer operations 
– Control operations 

– branches, calls

84



Performance insight 2: Instruction Throughput

•Estimate instruction throughput based on pc samples 

•  

•  

•

𝑇𝐻𝑅𝑂𝑈𝐺𝐻𝑃𝑈𝑇 =
𝐼𝑁𝑆

𝑇𝐼𝑀𝐸

𝐺𝐹𝐿𝑂𝑃𝑆 = 𝑇𝐻𝑅𝑂𝑈𝐺𝐻𝑃𝑈𝑇𝐷𝑃

𝐴𝑟𝑖𝑡h𝑚𝑒𝑡𝑖𝑐 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑇𝐻𝑅𝑂𝑈𝐺𝐻𝑃𝑈𝑇𝐺𝑀𝐸𝑀

𝑇𝐻𝑅𝑂𝑈𝐺𝐻𝑃𝑈𝑇𝐷𝑃

85



Roofline analysis
• 83.9% of peak performance

1 2 4 8 16 32

64

8192

1/21/4 FLOPS/Byte

Peak	Performance	(7065	GFLOPS)

Achieved	Performance	(1663	GFLOPS)

Theoretical	Performance	(1980	GFLOPS)

128

256

512

1024

2048

4096

Glo
bal	

Me
mo

ry	B
and

wid
th	(

900
	GB

/s)

GFLOPS

Arithmetic	Intensity	=	2.2

86



Performance insight 3: unfused DMUL and DADD 

• DMUL:  

• DADD:  
• If all paired DMUL and DADD instructions are fused to MAD instructions 

–    

– 1663 GFLOPS  114.7% = 1908 GFLOPS (99% of peak)

6.51 × 105

4.55 × 105

(4.55 × 105 + 3.08 × 106)
3.08 × 106

= 14.7%

×

87



Case Study Acknowledgements
• ORNL 
– Ronnie Chatterjee 

• IBM 
– Eric Liu 

• NERSC 
– Christopher Daley 
– Jean Sexton 
– Kevin Gott

88



Installing HPCToolkit for Analysis of GPU-accelerated Codes
• Full instructions: http://hpctoolkit.org/software-instructions.html 
• The short form 

• Clone spack 
– command: git clone https://github.com/spack/spack 

• Configure a packages.yaml file 
– specify your platform’s installation of CUDA or ROCM 
– specify your platform’s installation of MPI 
– use an appropriate GCC compiler 
• ensure that a GCC version >= 5 is on your path. typically, we use GCC 7.3 
• spack compiler find 

• Install software for your platform using spack 
– NVIDIA GPUs: spack install hpctoolkit@master +cuda +mpi 

– AMD GPUs: spack install hpctoolkit@master +rocm +mpi

89


